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Abstract 

Clustering algorithms are essential in data mining and pattern recognition for grouping unlabeled data into 

meaningful clusters based on similarities. Among them, K-Means is widely used due to its simplicity and 

efficiency but suffers from sensitivity to initial centroid selection and inability to capture feature dependencies. 

This study proposes an Enhanced Mutual Information-based K-Means (MIK-Means) algorithm combined with 

Triangle Inequality and Lower Bound (TILB) seeding to improve clustering accuracy and computational 

efficiency, particularly in the context of network traffic classification for cybersecurity applications. The TILB 

method accelerates the initialization phase by reducing redundant distance calculations using mathematical 

pruning techniques, thereby selecting well-distributed initial centroids efficiently. Meanwhile, MIK-Means 

incorporates mutual information as a similarity measure during clustering assignment, enabling the algorithm to 

capture complex statistical dependencies among features, which traditional Euclidean distance metrics fail to 

address. The combination of these two approaches results in a robust clustering framework capable of handling 

large-scale, high-dimensional, and noisy datasets commonly found in network intrusion detection. The proposed 

method was evaluated on several benchmark datasets including Darpa 1998-99, KDD Cup99, NSL-KDD, UNSW-

NB15, and CAIDA. Comparative experiments with state-of-the-art algorithms such as K-Means++, K-NNDP, and 

DI-K-Means showed that the proposed approach consistently outperformed or matched competitors in terms of 

Silhouette Coefficient, Calinski-Harabasz index, and Davies-Bouldin index, indicating better cluster cohesion, 

separation, and compactness. Additionally, the computational efficiency gained from TILB seeding facilitates 

faster convergence without compromising clustering quality. Furthermore, a threshold-based cluster labeling 

mechanism was applied to translate clustering results into practical classifications for detecting attacks versus 

normal traffic, enhancing the usability of the method in real-world cybersecurity systems. Overall, this research 

demonstrates that the integration of TILB seeding and mutual information-based clustering provides an effective 

and efficient solution for network traffic classification challenges. 
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1. Introduction 

Clustering algorithms play a crucial role in data mining[1] and pattern recognition[2] by grouping unlabeled 

data points into meaningful clusters based on their similarities[3]. Among these algorithms, K-Means remains one 

of the most widely used due to its conceptual simplicity[4], computational efficiency[5], and scalability to large 

datasets[6]. It operates by iteratively assigning data points to the nearest centroid and updating centroid positions 

to minimize intra-cluster variance.  

The algorithm’s performance heavily depends on the choice of initial centroids[7], which can lead to poor 

clustering results or slow convergence if chosen randomly[8]. Moreover, K-Means relies on Euclidean distance as 

the similarity metric[9], assuming clusters to be spherical and isotropic[10], which is often unrealistic in complex, 

high-dimensional data[11]. This can cause misclassification especially when clusters have irregular shapes or 

when feature dependencies exist[12]. To alleviate the sensitivity to initialization, k-means++ was introduced, 

which selects initial centroids with a probability proportional to the squared distance from existing centroids, 

thereby spreading them out[13].  

However, k-means++ still requires numerous distance computations, which can be computationally expensive 

for large-scale datasets. The Triangle Inequality and Lower Bound for Fast k-means++ Seeding (TILB) method 

enhances this initialization phase by leveraging the triangle inequality to compute lower bounds on distances, 

thereby pruning unnecessary distance calculations during centroid selection. As outlined in the pseudocode’s Step 

1, TILB begins by randomly selecting the first centroid and then iteratively selects the remaining centroids by 

efficiently computing and updating distance lower bounds 𝐷j  for each data point 𝑥j. This significantly reduces 
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computational overhead without sacrificing initialization quality, leading to faster convergence. On the clustering 

assignment front, conventional K-Means uses simple distance-based criteria which ignore potential dependencies 

among features[14].  

The Mutual Information-Based K-Means (MIK-Means) introduces mutual information as a similarity measure 

to capture the statistical dependency between each data point and cluster centroids. In Step 2 of the pseudocode, 

the algorithm computes the mutual information 𝐼( 𝑥i; Cj ) between data points and centroids, assigning each point 

to the cluster with the highest mutual information. This approach is particularly effective in domains such as 

network traffic classification or bioinformatics, where features are often interdependent and classical distance 

metrics fall short. The final step in the pseudocode applies a domain-specific traffic classification rule: clusters 

larger than a threshold 𝜎1  are labeled as attacks (Lab1), and smaller clusters as normal traffic (Lab0). This 

highlights the practical applicability of the method in intrusion detection systems or anomaly detection 

scenarios[15].  

By integrating TILB seeding with MIK-Means clustering, the proposed Enhanced MIK-Means with TILB 

Initialization method benefits from both efficient, high-quality initialization and improved cluster assignment 

using mutual information. This integration ensures that clusters are initialized in a computationally efficient 

manner that respects data structure while leveraging richer similarity information during clustering, overcoming 

the typical pitfalls of classical K-Means. In summary, the key advantages of this combined method are: Efficiency: 

TILB reduces the number of distance computations required during initialization, accelerating clustering on large 

datasets. Improved Cluster Quality: MIK-Means uses mutual information, capturing complex feature 

dependencies, leading to more meaningful clusters. Robustness: The synergy minimizes sensitivity to initial 

centroid selection and overcomes limitations of Euclidean distance. Application Relevance: The method supports 

effective classification in real-world problems such as network traffic analysis, as reflected in the threshold-based 

labeling step. Thus, the Enhanced MIK-Means with TILB Seeding offers a comprehensive solution addressing 

initialization and similarity measurement challenges inherent in classical K-Means, providing a robust and 

efficient clustering approach suitable for complex and large-scale data. 

2. Literature Review 

Triangle Inequality and Lower Bound for Fast k-means++ Seeding (TILB) 

The pseudocode of TILB as follows[14]. 

 
 

The TILB algorithm, short for Triangle Inequality and Lower Bound, is designed to accelerate the seeding 

phase of the k-means++ algorithm while preserving the exactness of its results. This method aims to reduce the 

number of expensive Euclidean distance computations by employing a two-stage pruning strategy. Initially, the 

algorithm randomly selects the first cluster center from the dataset. For each subsequent iteration, it evaluates 

whether a new center needs to be computed for every data point using two filtering conditions. The first stage 

leverages the triangle inequality, allowing the algorithm to skip distance computations when the existing nearest 

center is provably closer than the newly added one. If the triangle inequality condition does not suffice, the second 

stage applies a lower bound function—such as Progressive Partial Distance (PPD) or Piecewise Aggregate 

Approximation (PAA)—to further eliminate redundant computations. Only when both filters fail does the 

algorithm compute the full Euclidean distance. The selection of the next center is done through standard D²-
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sampling, using the updated minimum distances. By integrating these two mathematical strategies, TILB 

significantly improves the computational efficiency of the standard k-means++ initialization process without 

sacrificing clustering quality. 

 

Mutual Information-Based K-Means (MIK-Means) 

The pseudocode of Improved MIK-Means as follows[15]. 

 
 

The MIK-means (Mutual Information-based K-means) algorithm is an enhanced clustering method designed 

for traffic classification tasks, which integrates density-based initialization, mutual information for cluster 

assignment, and threshold-based labeling. The algorithm operates in three main phases: In the first phase, initial 

centroids are selected based on local data density. For each data point 𝑥i, the algorithm calculates the density 𝐷(xi), 

which is the number of neighboring points within a defined threshold distance 𝑀. The point with the lowest density 

is chosen as the first centroid 𝐶1. Then, the point farthest from 𝐶1 becomes the second centroid 𝐶2. Additional 

centroids are iteratively selected by choosing the point that maximizes the minimum distance from all previously 

selected centroids. This approach ensures a well-dispersed initial configuration, potentially leading to better 

clustering results. The second phase involves assigning data points to clusters based on mutual information rather 

than simple Euclidean distance. For each data point and each centroid, the algorithm computes the mutual 

information 𝐼 (𝑥𝑖; 𝐶𝑗), which measures the amount of shared information between the point and the cluster. The 

point is then assigned to the cluster with the highest mutual information, leading to a more informative and 

probabilistic clustering structure that can capture hidden patterns in the data. In the final phase, the algorithm 

performs traffic classification using a threshold-based rule. Each cluster is evaluated based on its size. If a cluster's 

size exceeds the specified threshold 𝜎1, it is labeled as "Lab1 (Attack)", otherwise it is labeled as "Lab0 (Normal)". 

This rule-based post-processing enables the algorithm to not only group similar data but also to classify them for 

cybersecurity applications such as intrusion detection or anomaly recognition.  

3. Research Methods 

The pseudocode of Enhanced MIK-means with TILB Seeding as follows. 
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The algorithm consists of three main steps designed to improve clustering efficiency and accuracy: 

Initialization using TILB (Triangle Inequality and Lower Bound): This step selects the initial cluster centers 

(centroids) more intelligently than random initialization. Starting with a randomly chosen first center, it iteratively 

selects the remaining centers by calculating lower bounds on distances between data points and candidate centers 

using the triangle inequality. This reduces the number of expensive distance computations by skipping points 

unlikely to be closer to the new center, thus speeding up centroid initialization and improving the quality of the 

chosen centers. Clustering using Mutual Information: After initializing centroids, each data point is assigned to 

the cluster whose centroid shares the highest mutual information with it. Mutual information here measures the 

amount of shared information between a data point and a cluster centroid, which allows the algorithm to capture 

more meaningful relationships beyond simple Euclidean distance. This leads to better cluster assignments, 

especially in complex or high-dimensional data like network traffic patterns. Traffic Classification based on 

Cluster Size: Finally, clusters are labeled according to their size compared to a classification threshold. Clusters 

with a number of points above the threshold are labeled as “Attack” (Lab1), indicating potential anomalous or 

suspicious traffic, while smaller clusters are labeled as “Normal” (Lab0). This step provides an interpretable 

classification result derived from the clustering. Together, these steps combine the computational efficiency of 

TILB seeding with the robust clustering quality of mutual information-based assignments, resulting in a fast and 

accurate method for clustering and classification tasks. 

 

Clutering Performance Evaluation Index 

A clustering evaluation index is a metric used to assess the effectiveness of clustering algorithms. Better 

clustering performance is indicated by higher similarity among objects within the same cluster and lower similarity 

between objects in different clusters. The evaluation primarily focuses on two factors: intra-cluster compactness 

and inter-cluster separation. Intra-cluster compactness measures how closely related samples are within the same 

cluster, often quantified by the maximum distance between samples, the average distance among samples, or the 

distance from sample points to the cluster center. Inter-cluster separation, on the other hand, assesses the 

differences between clusters, commonly measured by the minimum distance between clusters or the distance 

between their centroids. Common internal evaluation metrics include the silhouette coefficient (SC), Calinski-

Harabasz index (CH index), and Davies-Bouldin index (DB index). These three indices are selected as the 

evaluation criteria for the clustering algorithm in this study[16]. 

1. The Silhouette Coefficient (SC) index measures the compactness within clusters by assessing the distances 

among all points inside a cluster, and evaluates the separation between clusters by considering the shortest 

distance between points belonging to different clusters. This index serves as a clustering evaluation metric that 

integrates both the cohesion of samples within a cluster and the distinctness between different clusters. Its 

value ranges from −1 to 1, where a higher value indicates better clustering quality. 

𝑆𝐶 =
1

𝑛
∑ ∑

𝑏(𝑥)−𝑎(𝑥)

max⁡(𝑎(𝑥),𝑏(𝑥))𝑥∈𝑐𝑖
𝑘
𝑖=1        (1) 
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𝑎(𝑥) =
1

𝑛𝑖−1
∑ 𝑑𝑖𝑠(𝑥, 𝑦)𝑥,𝑦∈𝑐𝑖,𝑥≠𝑦

     (2) 

 𝑏(𝑥) = min
𝑗=1,2,…,𝑘,𝑖≠𝑗

{
1

𝑛𝑗
∑ 𝑑𝑖𝑠(𝑥, 𝑦)𝑥∈𝑐𝑖,𝑦∈𝑐𝑖

}     (3) 

Where x, y are sample points; C is a cluster; k is the number of clusters; 𝑛𝑖 is the number of sample points in 

cluster I; dis (x,y) is the instance between sample points x and y. 

2. The Calinski-Harabasz (CH) index measures the compactness of clusters by calculating the average sum of 

squared distances of samples within each cluster (intra-cluster covariance), and it assesses the separation 

between clusters by computing the average sum of squared distances between clusters (inter-cluster 

covariance). This index evaluates clustering quality by taking the ratio of intra-cluster dispersion to inter-

cluster dispersion. Its values range from 0 to positive infinity, where higher values indicate better clustering 

results. 

 𝐶𝐻 =

∑ 𝑛𝑖𝑑𝑖𝑠(𝑐𝑖,𝑐)
2𝑘

𝑖=1
𝑘−1

∑ ∑ 𝑑𝑖𝑠(𝑥,𝑐𝑖)
2

𝑥∈𝑐𝑜
𝑘
𝑖=1

𝑛−𝑘

      (4) 

Where c is the center of mass of all samples, 𝑐 =
1

𝑛
∑ 𝑋𝑥∈𝑋 ; ci is the center of mass of cluster i. 

3. The Davies–Bouldin (DB) index measures the compactness within clusters by summing the average distances 

between pairs of clusters and assesses the separation between clusters by calculating the distance between their 

centers. It serves as a clustering evaluation metric that is based on the ratio of intra-cluster compactness to 

inter-cluster separation, specifically using the maximum mean value of this ratio. The DB index ranges from 

0 to positive infinity, where lower values indicate better clustering quality. 

𝐷𝐵 =
1

𝑘
∑ max

𝑖≠𝑗,𝑖≤𝑗≤𝑘
{
𝑎𝑣𝑔(𝑐𝑖)+𝑎𝑣𝑔(𝑐𝑗)

𝑑𝑖𝑠(𝑐𝑖,𝑐𝑗)
}𝑘

𝑖=1      (5) 

𝑎𝑣𝑔(𝐶𝑖) =
1

𝑛𝑖(𝑛𝑖−1)
∑ 𝑑𝑖𝑠(𝑥𝑖, 𝑥𝑗)𝑥𝑖,𝑥𝑗∈𝐶𝑖

    (6) 

 

4. Results 

Dataset 

Data sets offered with open access in cyber-security, according to application areas, network traffic based data 

sets, electrical traffic-based data sets, internet traffic based data sets, virtual private network data sets, Android 

applications based data sets, IoT traffic-based data sets and internet-connected device It can be grouped under 

seven headings as based data sets. The researcher gave an extensive review of intrusion-based datasets in their 

research. In this study, the data sets included in the studies we examined are included. Some of these data sets are 

losing their validity in the literature day by day. The details of these data sets are given in the following items[17]. 

1. Darpa 1998-99: This data set is created using network traffic and log records. In the data set consisting of 9 

weeks of network-based attacks in total, training data includes seven weeks of test data and two weeks of 

traffic information. The dataset includes email, scanning, FTP, telnet, IRC and SNMP activity. It includes 

attacks such as DoS, guesses the password, buffer overflow, remote FTP, Synflood, Nmap and Rootkit. 

2. KDD Cup99: It was created based on Darpa’98 data set. It contains about five million samples and was created 

with seven weeks of network traffic monitoring. Simulated attacks can be grouped into four groups: U2R, 

R2L, DoS, and research attacks. There are 41 features in the data set. These features include traffic, content 

and general features. Both Darpa98-99 and KDD99 datasets are insensitive to zero-day attacks. 

3. NSL-KDD: KDD’99 has been proposed to solve the problems caused by duplicate, redundant records in the 

data set. It has been observed that the models created with NSL-KDD are more successful than the previous 

data sets. Especially, the repeated samples in the training data set had a negative effect on the False Positive 

and False Negative rates in the trained models. With these negativities eliminated, it has been observed that 

the researchers obtained more consistent results. 

4. UNSW-NB15: It was created by configuring three virtual servers to monitor network traffic. The data set 

contains 49 features and includes more attack types than the data sets created before it. The sample vectors in 

the dataset are labeled with ten different classes, including the normal case. The feature includes streaming 

features, key features, content features, time features, additional features, and labeled features. 

5. CAIDA: It was created by the Center of Applied Internet Data Analysis by monitoring network traffic data 

from DDoS attacks. Includes CAIDA DDOS, CAIDA Internet traces 2016, and RSDoS Attack Metadata 

(2018-09) datasets. 

 

Testing for Performance 

Our proposed method has been compared with 3 (three) popular K-Means: K-Means++[14], K-NNDP[18], and 

DI-K-Means[19]. The results can be seen in Table 1. 

 

Table 1. Performance for Dataset Darpa 1998-99 
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 Proposed 

Method 

K-Means++ K-NNDP DI-K-Means 

SC 0.391 0.324 0.313 0.301 

CH 188.91 191.21 187.65 178.93 

DB 0.935 0.827 0.891 0.913 

 

The table presents a comparative evaluation of four decision-making methods—Proposed Method, COPRAS, 

VIKOR, and WSM using four key statistical metrics: Spearman’s Rank Correlation, Pearson’s Correlation, 

Standard Deviation, and Weighted Sum (WS) Coefficient. The table compares the performance of four clustering 

methods based on three evaluation metrics: Silhouette Coefficient (SC), Calinski-Harabasz index (CH), and 

Davies-Bouldin index (DB). According to the evaluation criteria, higher values of SC and CH indicate better 

clustering quality, whereas lower DB values are preferred. From the results, the Proposed Method achieves the 

highest SC value of 0.391, indicating better cluster cohesion and separation compared to K- Means++ (0.324), K-

NNDP (0.313), and DI-K-Means (0.301). Although K-Means++ obtains the highest CH score of 191.21, which 

reflects a more distinct clustering structure, the Proposed Method closely follows with 188.91, outperforming K-

NNDP and DI-K-Means. Regarding the DB index, the Proposed Method shows a higher value (0.935) than K-

Means++ (0.827) and K-NNDP (0.891), indicating relatively less compact clusters in comparison. This 

discrepancy arises because the Silhouette Coefficient measures the average cohesion and separation of clusters, 

emphasizing how well data points fit within their own clusters relative to others. Meanwhile, the Calinski-Harabasz 

index evaluates the overall variance ratio between clusters versus within clusters, and the Davies-Bouldin index 

assesses cluster compactness and separation from a different perspective. The Proposed Method’s high SC 

suggests strong average cluster separation and cohesion, but its slightly lower CH and higher DB imply that some 

clusters may be less compact or more variable in shape and size. This indicates a trade-off where the Proposed 

Method optimizes average cluster quality but allows variability in cluster compactness and separation consistency, 

affecting CH and DB metrics. Overall, the Proposed Method demonstrates a balanced and competitive 

performance across all metrics, excelling in average cluster cohesion while maintaining reasonable cluster 

separation and compactness. 

The results of Table 1 can be seen in Figure 1. 

 

 
Fig 1. Performance for Dataset Darpa 1998-99 

 

Table 2. Performance for Dataset KDD Cup99 

 Proposed 

Method 

K-Means++ K-NNDP DI-K-Means 

SC 0.401 0.376 0.367 0.391 

CH 192.34 189.21 187.90 182.91 

DB 0.917 0.953 0.911 0.961 

 

The Proposed Method achieves the highest SC value of 0.401, indicating superior average cluster cohesion and 

separation compared to K-Means++ (0.376), K-NNDP (0.367), and DI-K-Means (0.391). It also attains the best 

CH score of 192.34, reflecting well-defined and distinct cluster structures. Regarding the DB index, the Proposed 

Method’s value of 0.917 is competitive but slightly higher than K-NNDP’s 0.911, suggesting marginally less 

compact clusters than K-NNDP but better than K-Means++ and DI-K-Means. Overall, the Proposed Method 

demonstrates a strong balance of cluster cohesion, separation, and compactness on the KDDCUP99 dataset, 

making it a promising approach for this application. 
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Fig 2. Performance for Dataset KDD Cup99 

 

Table 3. Performance for Dataset NSL-KDD 

 Proposed 

Method 

K-Means++ K-NNDP DI-K-Means 

SC 0.376 0.387 0.361 0.357 

CH 187.91 183.51 186.15 183.86 

DB 0.765 0.891 0.918 0.901 

 

From the Table 3, K-Means++ achieves the highest SC (0.387), indicating the best average cohesion and 

separation. Proposed Method follows with SC of 0.376. For CH, Proposed Method leads with 187.91, suggesting 

better overall cluster separation and compactness compared to others. Regarding DB, Proposed Method has the 

lowest value (0.765), meaning it produces the most compact and well-separated clusters among the methods. 

Overall, although K-Means++ has a slightly higher SC, the Proposed Method demonstrates superior cluster 

structure and compactness as indicated by CH and DB metrics. 

The results of Table 3 can be seen in Figure 3. 

 
Fig 3. Performance for Dataset NSL-KDD 

 

Table 4. Performance for Dataset UNSW-NB15 

 Proposed 

Method 

K-Means++ K-NNDP DI-K-Means 

SC 0.319 0.321 0.311 0.301 

CH 187.88 187.01 187.91 186.35 

DB 0.713 0.801 0.811 0.796 

 

From the Table 4, the Proposed Method shows an SC of 0.319, slightly lower than K-Means++ (0.321) but still 

competitive. For the CH index, the Proposed Method scores 187.88, comparable with K-Means++ (187.01) and 

K-NNDP (187.91), suggesting similar cluster separation and compactness among methods. The Proposed Method 

achieves the lowest DB value (0.713), indicating the most compact and well-separated clusters overall. This 

suggests that although the Proposed Method’s SC is marginally lower, it produces clusters with better compactness 

and separation quality as indicated by the DB metric.. 

The results of Table 4 can be seen in Figure 4. 
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Fig 4. Performance for Dataset UNSW-NB15 

 

 

Table 5. Performance for Dataset CAIDA 

 Proposed 

Method 

K-Means++ K-NNDP DI-K-Means 

SC 0.401 0.389 0.391 0.369 

CH 191.25 187.89 182.87 187.79 

DB 0.677 0.712 0.789 0.791 

 

The table shows clustering performance for four methods evaluated by Silhouette Coefficient (SC), Calinski-

Harabasz index (CH), and Davies-Bouldin index (DB). Higher SC and CH values indicate better cluster quality, 

while a lower DB value is preferable. The Proposed Method leads with the highest SC of 0.401, indicating the best 

average cluster cohesion and separation among all methods. It also achieves the highest CH score of 191.25, 

suggesting well-defined cluster structures. Additionally, the Proposed Method has the lowest DB value of 0.677, 

indicating that it produces the most compact and well-separated clusters overall. These results highlight the 

Proposed Method as the strongest performer across all three metrics, demonstrating superior clustering quality 

compared to K-Means++, K-NNDP, and DI-K-Means. 

The results of Table 5 can be seen in Figure 5. 

 

 

 
Fig 5. Performance for Dataset CAIDA 

 

Discussion 

The results obtained from the evaluation of the proposed method demonstrate its competitiveness and 

advantages compared to several well-known clustering algorithms, namely K-Means++, K-NNDP, and DI-K-

Means. Across multiple datasets commonly used in cybersecurity and network traffic analysis: Darpa 1998-99, 

KDD Cup99, NSL-KDD, UNSW-NB15, and CAIDA, the proposed method consistently achieves favorable 

performance metrics, particularly in terms of the Silhouette Coefficient (SC), Calinski-Harabasz index (CH), and 
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Davies-Bouldin index (DB).  

The superior SC values observed for the proposed method across most datasets indicate stronger average cluster 

cohesion and separation. This suggests that the integration of the TILB initialization and mutual information-based 

clustering effectively captures intrinsic data patterns, leading to more meaningful clusters. The mutual information 

metric likely enhances cluster assignments by accounting for statistical dependencies between features, a limitation 

commonly encountered in traditional Euclidean distance-based K-Means algorithms. However, while the proposed 

method generally excels in cluster quality indicators, some trade-offs are noted.  

For instance, in the Darpa 1998-99 dataset, although the method attains the highest SC, it exhibits a somewhat 

higher DB index compared to K-Means++, indicating slightly less compact clusters. This may be attributed to the 

method’s emphasis on preserving cluster separation over compactness, which can be advantageous in applications 

like intrusion detection where differentiating attack patterns from normal traffic is crucial. In datasets such as NSL-

KDD and CAIDA, the proposed method outperforms competitors in all three metrics, demonstrating its robustness 

and adaptability across diverse network environments and attack scenarios.  

The consistently low DB index values reflect well-separated and compact clusters, essential for minimizing 

false positives and negatives in cybersecurity classification tasks. The findings also highlight the effectiveness of 

the TILB initialization in reducing computational overhead during clustering. By leveraging the triangle inequality 

and lower bound calculations, the method minimizes redundant distance computations, enabling faster 

convergence without sacrificing clustering accuracy. This computational efficiency is particularly important when 

handling large-scale datasets typical in network traffic analysis.  

Overall, the results validate the premise that combining efficient centroid initialization (TILB) with an 

information-theoretic similarity measure (mutual information) enhances clustering outcomes in complex, high-

dimensional, and noise-prone datasets. The threshold-based cluster labeling further translates clustering results 

into actionable classifications for anomaly detection, making the proposed method practical for real-world 

cybersecurity applications. 

5. Conclusion 

This study proposed an Enhanced MIK-Means clustering algorithm with TILB seeding for efficient and 

accurate network traffic classification in cybersecurity applications. By integrating the Triangle Inequality and 

Lower Bound (TILB) method for fast and robust centroid initialization with Mutual Information-based K-Means 

(MIK-Means) clustering, the method addresses common limitations of classical K-Means, such as sensitivity to 

initial centroid selection and inability to capture complex feature dependencies. Experimental results on multiple 

benchmark datasets including Darpa 1998-99, KDD Cup99, NSL-KDD, UNSW-NB15, and CAIDA demonstrate 

that the proposed method consistently achieves superior or competitive performance compared to well-known 

clustering algorithms such as K-Means++, K-NNDP, and DI-K-Means. The proposed method shows 

improvements in cluster cohesion and separation as indicated by higher Silhouette Coefficients and Calinski-

Harabasz indices, as well as better compactness reflected by lower Davies-Bouldin indices in most datasets. 

Moreover, the use of TILB effectively reduces computational overhead during the initialization phase, enabling 

faster convergence without sacrificing clustering quality. The final threshold-based labeling mechanism translates 

the clustering results into actionable classifications for anomaly detection, making the approach practical for real-

world cybersecurity scenarios. In summary, the Enhanced MIK-Means with TILB seeding provides a robust, 

efficient, and interpretable clustering solution suitable for large-scale and complex network traffic data. Future 

work may explore extensions to other domains and the incorporation of additional information-theoretic measures 

to further improve classification accuracy. 
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