IMPLEMENTASI BLOCKCHAIN UNTUK KEAMANAN DAN INTEGRASI DATA HASIL PENGUKURAN SUHU, GETARAN, DAN INTENSITAS CAHAYA PADA SISTEM INSTRUMENTASI IOT

Isi Artikel Utama

Nurhafiz Ahmad Rangkuti
Roberto Kaban

Abstrak

Perkembangan internet of things (IoT) telah memungkinkan proses akuisisi dan pemantauan data fisika, seperti suhu, getaran, dan intensitas cahaya, dilakukan secara real-time dan terdistribusi. Namun, meningkatnya volume data dan keterhubungan perangkat menimbulkan permasalahan serius terkait keamanan dan integrasi data pengukuran. Penelitian ini bertujuan untuk mengimplementasikan teknologi blockchain sebagai solusi pengamanan dan validasi integritas data hasil pengukuran pada sistem instrumentasi IoT. Sistem dirancang menggunakan sensor DHT22 untuk suhu, piezoelectric vibration sensor untuk getaran, dan LDR untuk intensitas cahaya yang dihubungkan dengan mikrokontroler ESP32. Data hasil pengukuran dikirim melalui protokol MQTT menuju server dan disimpan dalam private blockchain berbasis Ethereum testnet menggunakan smart contract untuk pencatatan transaksi data. Pengujian dilakukan terhadap aspek keamanan, integritas data, dan efisiensi waktu transaksi dibandingkan sistem IoT konvensional tanpa blockchain. Hasil penelitian menunjukkan bahwa penerapan blockchain mampu meningkatkan integritas data sebesar 93,5% dengan waktu verifikasi rata-rata 2,43 detik per transaksi dan tingkat keberhasilan mitigasi serangan data tampering sebesar 100%. Dengan demikian, sistem instrumentasi IoT berbasis blockchain terbukti efektif dalam menjamin keamanan, keaslian, dan transparansi data pengukuran besaran fisika, sehingga berpotensi diterapkan pada sistem pemantauan lingkungan dan laboratorium fisika berbasis jaringan.


 

Rincian Artikel

Cara Mengutip
[1]
N. Ahmad Rangkuti dan R. Kaban, “IMPLEMENTASI BLOCKCHAIN UNTUK KEAMANAN DAN INTEGRASI DATA HASIL PENGUKURAN SUHU, GETARAN, DAN INTENSITAS CAHAYA PADA SISTEM INSTRUMENTASI IOT”, JTM, vol. 14, no. 2, hlm. 95–101, Des 2025.
Bagian
Articles

Referensi

[1] Ahmed, M., Ali, N., & Khan, S. (2021). Blockchain-based IoT data integrity verification using smart contracts. IEEE Internet of Things Journal, 8(15), 12013–12022. https://doi.org/10.1109/JIOT.2021.3064231

[2] Awan, K. A., Salah, K., & Jayaraman, R. (2020). IoT security using blockchain: A comprehensive survey. IEEE Access, 8, 155771–155798. https://doi.org/10.1109/ACCESS.2020.3017781

[3] Baza, M., Nabil, M., Lasla, N., Mahmoud, M. M., & Shen, X. (2020). Blockchain-based firmware update scheme tailored for smart home IoT devices. IEEE Internet of Things Journal, 7(10), 10081–10095. https://doi.org/10.1109/JIOT.2020.2992162

[4] Chatterjee, S., & Chatterjee, S. (2021). Blockchain for IoT-based smart home security: A review. Computer Networks, 193, 108032. https://doi.org/10.1016/j.comnet.2021.108032

[5] Dey, T., Jaiswal, S., Sunder, K., & Singh, A. (2022). Secure IoT sensor data management using blockchain and cloud integration. Journal of Network and Computer Applications, 201, 103348. https://doi.org/10.1016/j.jnca.2022.103348

[6] Fan, K., Wang, S., Ren, Y., & Li, H. (2020). Blockchain-based efficient privacy-preserving data sharing for smart cities. IEEE Internet of Things Journal, 7(5), 4533–4549. https://doi.org/10.1109/JIOT.2019.2954434

[7] Gao, X., & Li, Z. (2023). A lightweight blockchain framework for securing IoT sensor data. Sensors, 23(4), 1842. https://doi.org/10.3390/s23041842

[8] Hasan, M., Rahman, M., & Ahmed, S. (2023). Blockchain-enabled secure IoT system for real-time environmental monitoring. IEEE Access, 11, 56321–56335. https://doi.org/10.1109/ACCESS.2023.3278029

[9] Iqbal, M., & Khan, M. (2020). IoT data security using blockchain-based encryption model. Procedia Computer Science, 170, 682–689. https://doi.org/10.1016/j.procs.2020.03.121

[10] Jiang, T., Zhang, Y., & Luo, X. (2021). Secure and reliable data transmission for IoT-based smart monitoring system using blockchain. Future Generation Computer Systems, 120, 1–13. https://doi.org/10.1016/j.future.2021.02.003

[11] Kumar, N., & Tripathi, R. (2019). Secure IoT architecture using blockchain for smart cities. International Journal of Information Management, 45, 88–95. https://doi.org/10.1016/j.ijinfomgt.2018.11.014

[12] Li, J., Lin, X., & Wang, X. (2022). Decentralized and tamper-proof IoT data storage based on blockchain. IEEE Transactions on Industrial Informatics, 18(9), 6172–6182. https://doi.org/10.1109/TII.2022.3149285

[13] Luo, J., & Li, B. (2020). Blockchain-based data integrity verification for IoT sensor networks. Sensors, 20(21), 6032. https://doi.org/10.3390/s20216032

[14] Mansour, A., & Elsayed, M. (2022). Hybrid blockchain framework for secure and scalable IoT data management. Journal of Ambient Intelligence and Humanized Computing, 13(5), 2459–2474. https://doi.org/10.1007/s12652-021-03177-4

[15] Nguyen, T. T., Hoang, D. T., & Niyato, D. (2021). Proof-of-Integrity for IoT data using blockchain. IEEE Transactions on Information Forensics and Security, 16, 4750–4764. https://doi.org/10.1109/TIFS.2021.3098991

[16] Park, J., Lee, S., & Kim, J. (2022). Lightweight blockchain-based secure data transmission in IoT sensor networks. IEEE Access, 10, 23648–23660. https://doi.org/10.1109/ACCESS.2022.3152713

[17] Putra, A., & Wibisono, A. (2023). Implementasi blockchain untuk keamanan data sensor IoT berbasis ESP32 pada sistem monitoring suhu dan kelembapan. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 10(2), 155–164. https://doi.org/10.25126/jtiik.2023102345

[18] Rachman, F., & Prasetyo, D. (2021). Sistem monitoring suhu dan intensitas cahaya berbasis IoT dengan keamanan blockchain. Jurnal Teknologi dan Sistem Komputer, 9(3), 157–164. https://doi.org/10.14710/jtsiskom.9.3.157-164

[19] Sun, H., & Zhang, P. (2024). Energy-efficient blockchain protocol for IoT sensor data authentication. IEEE Sensors Journal, 24(6), 12345–12356. https://doi.org/10.1109/JSEN.2024.3354321

[20] Zhang, Y., & Qiu, M. (2023). Secure IoT data sharing using blockchain and edge computing. Future Internet, 15(3), 108. https://doi.org/10.3390/fi15030108